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Although calculations of this type do not
predict the proper behavior for the o-8
characteristic near stopbands resulting from
a periodic perturbation, they do predict the
occurrence and width of such stop bands.

Murray D, Sirkis
Microwave Electronics Lab.
Dept. of Electrical Engrg.
Rutgers the State University
New Brunswick, N. J.

Ice as a Bending Medium for Wave-
guide and Tubing*

Bending waveguide and metal tubing is
very often a difficult and time-consuming
task. Low melting temperature alloys are
at times difficult to remove from waveguide
and tubing. The piece to be bent may be
filled with water which is then frozen by dry
ice, liquid nitrogen, or by a deep freeze. In
some applications where the piece to be bent
is integral with a larger system, a block of
dry ice may be held against it to freeze only
the portion of water around the section to
be bent. The use of these low temperatures
causes not only the water to freeze into
quite small crystals (which act like a sand
packing), but also prevents the ice from
melting because of the pressure of bending.

Several tests were performed on thin
walled aluminum tubing and P-band brass
waveguide. It was found that in comparison
to low melting alloys the bends were iden-
tical within the statistical variation of sam-
ples. The time required for the operation
was considerably shorter.

FrANKLIN S. COALE |

Microwave Engrg. Labs., Inc.
Palo Alto, Calif.

* Received by the PGMTT, November 2, 1959.

On Higher-Order Hybrid Modes of
Dielectric Cylinders*

In the course of investigations into the
properties of various surface wave struc-
tures,! it became necessary to investigate
hybrid modes on dielectric cylinders for
modes of order #, where n>1, The case n=1
has received extensive treatment in the
literature [1]~[6]

The radial dependence of the axial fields
isas J, [p(p/a)] inside the dielectric cylinder
and K,|g(p/a)] outside, where p is the radial

* Received by the PGMTT, November 5, 1959,
This note is based on studies undertaken pursuant to
Contract AF 19(604)3879 with the Air Force Cam-
bridge Research Center.

! Report in preparation.
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cylindrical coordinate, a is the radius of the
cylinder, p and ¢ are radial eigenvalues, and
# is the rank of the mode.

The requirement of continuity of the
fields at the boundary leads, in the usual
manner, to the characteristic equation in-
volving Bessel functions and their deriva-
tives. This was first given by Schelkunoff
[4]. The derivatives of Bessel functions may
be eliminated from this equation by the use
of identities such as given by Watson [8], to
yield the simple form

(J* + K™ — K7)

+ "= K)JTHEN =0, (1)
where
Jn_l(P) b -ﬁﬂ@
T ) 27a(0)
KMI(Q) r Kn+1(_g_) i
T K@ 9Kn(g)’

and e is permittivity of dielectric cylinder
relative to surrounding medium.

The cutoff values of the parameter p
are of great interest; they may be obtained
by letting ¢—0 in the characteristic equa-
tion. To keep the terms finite requires that
the equation be multiplied by an appropri-
ate power of ¢ before the limit is taken. If it
is assumed that J~ is finite at cutoff, it is
sufficient to multiply the equation by g¢?
to obtain a solution for the cutoff values of
p; this was given by Schelkunoff [4]. How-
ever, if this assumption is not made, an
additional solution may be determined. This
will be outlined below.

Multiplying the characteristic equation

by [gpTu(p)]? gives

(s + ‘.72K+an) (eJn1 — pJK7)

+ (Vo1 — pJoK N Tns + @K pJ0) = 0. (2)
Taking the limit as ¢—0 and noting that

- 1
2n — 1)
and ¢g?K+—2# one obtains
T
2 pTs ((e )y — 2 ) 0. @)
n—1
The solutions are, for n>1,
Tni(P) 1
e .. 4
2T n(2) w— D+ 1) @)
Ju(p) =0, p =0, (5)

Eq. 4 is given by Schelkunoff [4]. The
very significant exclusion of the p=0 solu-
tion of (3) as a cutoff condition is based on
the fact that for ¢—0 and p—0, (1) be-
comes, since

Jo—— Jr—

” 20+ 1)

2(n + 1) ¢ ) <2m 2(n — 1))

+(j§'2(n 1))(2(n+1)+2ﬂ =0 ©®

When the finite terms are neglected in com-
parison with the infinite terms, it is seen
that this is not satisfied at ¢=0, =0 for
any #>1. However, the p=¢=0 solution,
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i.e., the condition for “no cutoff,” is valid for
n=1 [1].

The asymptotes for the p—g curves are
of interest. For ¢g— <« the characteristic
equation becomes simply 2¢J-J* =0, with
solutions at Jr_1(p)=0 and Jnu(p)=0. It
will be seen that the first of these is asso-
ciated with the modes satisfying the first
or Schelkunoff cutoff condition, the second
with the alternate cutoff condition given
here in (5).

Because of the oscillatory character of
Ju{p), the characteristic equation is satis-
fied by an infinite set of values of p for any
given ¢, in particular also for g=0. These
sets of p's span an infinite set of modes which
may propagate along the dielectric rod. It
is now seen that the existence of the alter-
nate cutoff condition indicates the existence
of an infinite set of modes that interlace the
modes that satisly the cutoff condition of
(4). This and other salient characteristics
of the doubly infinite set of modes are pre-
sented qualitatively in Fig. 1, with the n=1
case treated by Beam [1] included for com-
parison in Fig. 2. The curve shapes are based
upon the detailed numerical solution of (2)
obtained with an IBM 650 computer for
n=2, 6 for a wide range of e.

The significance of Fig. 1 may be sum-
marized as follows.
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Fig. 1—Loci of solutions of the characteristic equa-
tion (1) for n >1.
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Fig. 2—Curves of p and ¢ for n =1.
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1) There is a set of modes that alter-
nates with those identified with the cutoff
condition of Schelkunoff in (4). Their cutoff
condition is given by (5).

2) The modes identified with (4) have
a cutoff that depends on ¢, whereas the
modes satisfying the alternate condition
have a single cutoff value of p for all e.

3) For n>1 all modes have some cutoff
value. The principal mode for #=1 has no
cutoff. There is no “degeneracy” of the
modes for #>1 as there is for #=1 modes,
as described by Beam [1]; that is, each
mode has its own distinct cutoff point.

4) There is a unique principal mode for
all .

5) The existence of an additional mode
between successive Schelkunoff modes re-
duces the upper frequency limit at which a
pure principal mode may propagate below
what the limit would be if only Schelkunoff
modes existed, as follows.

The p—¢q curves may be used to deter-
mine the frequency dependence of the mode
propagation with the aid of the additional
relation

# 4 =R Q)
where R=(2a/N)mv/e—1. This indicates
that for a given dielectric rod of radius a,
the actual values of p and ¢ may be found
at the intersection of the p—¢ curves with a
superimposed circle of radius R correspond-
ing to the frequency of operation for which
the free-space wavelength is A\, To insure
the propagation of a unique mode, the circle
must intersect the p-¢ curves only once.
For the principal mode, this means that the
upper limit of R, and hence of frequency, is
determined by the requirement that R< p,
where Ju(po)=0. The lower limit of fre-
quency is of course determined by the cutoff
value of p (see Fig. 3).

It is now seen that there is no degeneracy
to impose a notational distinction, so that
the modes could be simply numbered suc-
cessively. In the interest of conforming to
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Fig. S—Determination of operating point Q' corre-
sponding to a given frequency by superposition of
a circle of radius R on ¢ —g curves.
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1) Lower limit of R, 2) Typical R. 3) Upper limit
of R. 4) R>po. 5) Upper limit of R in absence of
alternate modes. Q: operating point for typical R,
Q1, Qs two operating points for R >po: impure
mode. Ip, l4: useful ranges of p, ¢, for pure prin-
cipal mode.

Correspondence

the nomenclature for =1, however, and
in order to preserve the distinction be-
tween the modes that satisl{y the Schelkunoff
cutoff condition and those that satisfly the
alternate condition, the HFE.n, EHum dis-
tinction is retained here, starting with HEu
for the principal mode.

An attempt to verify a possible distinc-
tion between H- and E-type modes for
the general case of any #, as suggested by
Wegener and others [1], [7] for n=1, has
not been found by the authors to lead to
consistent results. The designation here of
a mode as HE,, is hence not to be construed
as an indication that the mode must be
H type.

The existence of the alternate cutoff con-
dition, (5), has been confirmed independently
using approximation methods by Snitzer
[9] in the course of his investigation into
the optical properties of thin fibers.

S. P. SCHLESINGER

P. DiaMENT

A. VIGANTS

Dept. of Electrical Engrg.
Columbia University
New York, N. Y.
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A Property of Symmetric Hybrid
Waveguide Junctions*

It is well known that in symmetric
hybrid junctions such as the short-slot,
branched-guide, and transvar types, the
signals in the main and auxiliary guides are
in phase quadrature. Another property of
fully symmetric lossless hybrids is that if all
the arms are matched, the amplitudes of the
waves traveling in the reverse direction in
the main and auxiliary guides are equal. A
proof is given below.

Since in a well-designed hybrid these
amplitudes will be of the order of 0.03 or

#* Received by the PGMTT, November 12, 1959,
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less, relative to the input, this is not an easy
fact to observe experimentally. However,
if the measured VSWR and isolation of such
a hybrid are inconsistent, one may reflect
that this must be because of

1) experimental error,

2) mismatch of terminations or bends
introduced for purposes of measure-
ment,

3) asymmetry allowed by manufactur-
ing tolerances,

4) ohmic loss.

Proof : Let arms 1~-3 be the main guide, and
arms 2—4 the auxiliary guide. If the hybrid
is fully symmetric its scattering matrix will

b

D
C
B

O o W
Woe DO

D C

where 4 and B are small, and C and D have
approximately equal amplitude. If the
hybrid is lossless, S is unitary, which gives
us

A

Re (AB) + Re (CD) = 0, 6
Re (4C) + Re (BD) = 0, @
Re (AD) + Re (BC) = 0, 3)

where the bar denotes the complex conju-
gate. Let 4 =4:4+j4,, and similarly for B
and D, and let the reference planes be chosen
so that C is real. Then (1) shows that D,
is a second-order small quantity, leading to
the first property that C and D are in quad-
rature.

Putting D=jC, we have from (2) and
(3), respectively,

A4, = — By,
A2 = —Bl.

Hence 4 = —jB, and 4 and B have the same
amplitude.

I wish to thank T. A. Williams for help-
ful comments, and the Executive of the
AEI Electronic Apparatus Division and the
Board of the BTH Company for permission
to publish this note.

J. M. SmitH

Military Radar Engrg. Dept.
Electronic Apparatus Div.
Associated Electrical Industries, Ltd.
Trafford Park, Manchester, Eng.

Attenuation in a Resomnant
Ring Circuit*

The use of a resonant circuit will permit
raising the strength of electromagnetic fields
to values considerably higher than that
available directly from a transmitter. In the
usual resonant cavity, standing waves exist
which may raise some doubt as to the use-
fulness of this method for testing certain

# Received by the PGMTT, November 13, 1959.



