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Although calculations of this type do not
predict the proper behavior for the u-/3

characteristic near stopbands resulting from
a periodic perturbation, they do predict the
occurrence and width of such stop bands.

MURRAY D. SIRKIS

Microwave Electronics Lab.
Dept. of Electrical Engrg.

Rutgers the State University
New Brunswick, N. J.

Ice as a Bending Medium for Wave-

guide and Tubing*

Bending waveguide and metal tubing is

very often a difficult and time-consuming
task. Low melting temperature alloys are
at times difficult to remove from waveguide

and tubing. The piece to be bent may be

filled with water which is then frozen by dry

ice, liquid nitrogen, or by a deep freeze. In

some applications where the piece to be bent

is integral with a larger system, a block of
dry ice may be held against it to freeze only
the portion of water around the section to
be bent. The use of these low temperatures
causes not only the water to freeze into
quite small crystals (which act like a sand
packing), but also prevents the ice from

melting because of the pressure of bending.
Several tests were performed on thin

walled aluminum tubing and P-band brass

waveguide. It was found that in comparison
to low melting alloys the bends were iden-

tical within the statistical variation of sam-
ples. The time required for the operation

was considerably shorter.
FRANKLIN S. COALE

Microwave Engrg. Labs., Inc.
Palo Alto, Calif.

* Received by the PGMTT, November 2, 1959.

On Higher-Order Hybrid Modes of
Dielectric Cylinders*

In the course of investigations into the
properties of various surface wave struc-

tures, 1 it became necessary to investigate
hybrid modes on dielectric cylinders for
modes of order n, where n >1. The case %= 1
has received extensive treatment in the

literature [I]- [6].
The radial dependence of the axial fields

is as .Tn [@(P/a)] inside the dielectric cylinder
and Km [g(p/a) ] outside, where P is the radial

* Received by the PGMTT, November 5, 1959.
This note is based on studies undertaken pursuant to
Contract AF 19(604)3879 with the Air Force Cam.
bridge Research Center.

1 Report in preparation.’

cylindrical coordinate, a is the radius of the
cylinder, @ and q are radial eigenvalues, and

n is the rank of the mode.
The requirement of continuity of the

fields at the boundary leads, in the usual
manner, to the characteristic equation in-
volving Bessel functions and their deriva-
tives. This was first given by Schelkunoff
[4]. The derivatives of Bessel functions may

be eliminated from this equation by the use
of identities such as given by Watson [8], to
yield the simple form

(J+ + K+) (,J- – K-)

+ (J-– K-) (J++ K+) = o, (1)

where

~_ = J.-1(P) J.+,(P)

p~.(p) ‘
J+ = ~Jzz ;

Kn-,(q) K+ = K.+,(q)K- =___ —. .
qKn(q) ‘ qKn(q) ‘

and e is permittivity of dielectric cylinder
relative to surrounding medium.

The cutoff values of the parameter p
are of great interest; they may be obtained

by letting q-O in the characteristic equa-

tion. To keep the terms finite requires that

the equation be multiplied by an appropri-
ate power of q before the limit is taken. If it
is assumed that ~– is finite at cutoff, it is
sufficient to multiply the equation by qz
to obtain a solution for the cutoff values of
p; this was given by %helkunoff [4]. How-
ever, if this assumption is not made, an
additional solution may be determined. This

will be outlined below.

Multiplying the characteristic equation
by [qp~.(p) ]2 gives

(0’.ln+, + q2K+PJC) (eJn-, – jJnK-)

+ (Jn-, – pJ.K-) (Gq’J.+, + g2K+PJ.) = O. (2)

Taking the limit as g+O and noting that

K– ~ —~
2(?Z – 1)

and qzK++2n one obtains

(2n pJ. (c + l)Jn_l - &
)

= o. (3)

The solutions are, for n >1,

.Tn(p) = o, p#o. (5)

Eq. 4 is given by Schelkunoff [4]. The
very significant exclusion of the p = O solu-
tion of (5) as a cutoff condition is based on
the fact that for q-O and @-+0, (1) be-
comes, since

J-~?,
1

J+ ~ ___ ,

P’ 2(Z + 1)

(

1
.—

Z%<+T)+;) (3–27. – 1) )

2% 1

+ (F– 2(.–1) )(
~+~ + ~) =0. (6)

When the finite terms are neglected in com-
parison with the infinite terms, it is seen
that this is not satisfied at q = O, @= O for
any n >1. However, the @= g = O solution,
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i.e., the condition for “no cutoff, ” is valid for

?2=1 [1].
The asymptotes for the p–q curves are

of interest. For g+ ~ the characteristic
equation becomes simply 2EJ–J+ = O, with
solutions at Jn–l(p) = O and J~+l(p) = O. It
will be seen that the first of these is asso-
ciated with the modes satisfying the first
or Schelkunoff cutoff condition, the second

with the alternate cutoff condition given
here in (5).

Because of the oscillatory character of

J.(p), the characteristic equation is satis-

fied by an infinite set of values of P for any

given q, in particular also for g= O. These

sets of p’s span an infinite set of modes which
may propagate along the dielectric rod. It
is now seen that the existence of the alter-
nate cutoff condition indicates the existence

of an infinite set of modes that interlace the
modes that satisfy the cutoff condition of
(4). This and other salient characteristics

of the doubly infinite set of modes are pre-
sented qualitatively in Fig. 1, with the n = 1

case treated by Beam [1] included for com-
parison in Fig. 2. The curve shapes are based

upon the detailed numerical solution of (2)

obtained with an IBM 650 computer for

n =2, 6 for a wide range of e.
The significance of Fig. 1 may be sum-

marized as follows.
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Fig. l—Loci of solutions of the characteristic eqna-
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Fig. 2—Curves of p and Q for u =1.
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1) There is a set of modes that alter-
nates with those identified with the cutoff

condition of Schelkunoff in (4). Their cutoff

condition is given by (5).
2) The modes identified with (4) have

a cutoff that depends on q whereas the
modes satisfying the alternate condition

have a single cutoff value of p for all e.
3) Forn>l allmodes have some cutoff

value. The principal mode for ?z=l has no
cutoff. There is no “degeneracy” of the
modes for n>l as there is for n.=1 modes,
as described by Beam [I]; that is, each
mode has its own distinct cutoff point.

4) There isa unique principal mode for

all W.
5) The existence of an additional mode

between successive Schelkunoff modes re-

ducesthe upper frequency limit at whicha

pure principal mode may propagate below
what the limit would be if only Schelkunoff
modes existed, as follows.

The p–g curves may be used to deter-
mine the frequency dependence of the mode
propagation with the aid of the additional
relation

where R=(2a/AO)T~e—l. This indicates

that for a given dielectric rod of radius LZ,

the actual values of @ and q may be found
at the intersection of the p–g curves with a

superimposed circle of radius R correspond-
ing to the frequency of operation for which

the free-space wavelength is AO, To insure
the propagation of a unique mode, the circle
must intersect the p–q curves only once.
Forthe principal mode, this means that the

. .
upper hmlt Of R, and hence of frequency, is
determined by the requirement that R< PO,

where ~n(@o)=O. The lower limit of fre-

quency is of course determined by the cutoff
value of p (see Fig. 3).

It is now seen that there is no degeneracy
to impose a notational distinction, so that

the modes coLlkl be simply numbered suc-
cessively. In the interest of conforming to

t I n>l

r
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Fitz. 3—Determination ot operating point Q corre-
srm,ndzmz to a,givm frequency by superposition cf
acxcle of radms Rol? $—q curves.

1 2a _
f(n,a) =- R= —.4, –I.

(n –1)(6+1) ‘ h

I) Lo!uer limit of R. 2) Typical R. 3) Upper limit
of R. 4 ) R >PO, 5 ) Upper limit of R in absence of
alternate modes. Q: operating point fOr typical R.
Q,, QI: two operating points for R >$0: Impure
mode. tz, Zr: useful ranges of S, g, for pure prin-
cipal mode.

the nomenclature for n = 1, however, and
in order to preserve the distinction be-

tween the modes that satisfy the Schelkunoff

cutoff condition and those that satisfy the

alternate condition, the HE,,~, EHnti dis-

tinction is retained here, starting with HE.:

for the principal mode.
An attempt to verify a possible distinc-

tion between H- and E-type modes for
the general case of any n, as suggested by
Wegener and others [1], [7] for n =1, has
not been found by the authors to lead to
consistent resu Its. The designation here of
a mode as HE.,. is hence not to be construed

as an indication that the mode must be
H type.

The existence of the alternate cutoff con-

dition, (5), has been confirmed independently

using approximation methods by Snitzer
[9] in the course of his investigation into

the optical properties of thin fibers.
S. P. SCHLESINGER

P. DIAMENT

A. VI GANTS

Dept. of Electrical Engrg.
Columbia University

New York, N. Y.
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A Property of Symmetric Hybrid

Waveguide Junctions*

It is well known that in symmetric

hybrid junctions such as the short-slot,
branched-guide, and transvar types, the
signals in the main and auxiliary guides are
in phase quadrature. Another property of
fully symmetric lossless hybrids is that if all
the arms are matched, the amplitudes of the
waves traveling in the reverse direction in
the main and auxiliary guides are equal. A
proof is given below.

Since in a well-designed hybrid these

amplitudes will be of the order of 0.03 or

less, relative to the input, this is not an easy

fact to observe experimentally, However,

if the measured VSWR and isolation of such

a hybrid are inconsistent, one may reflect

that this must be because of

1 ) experimental error,
2) mismatch of terminations or bends

introduced for purposes of measure-
ment,

3) asymmetry allowed by manufactur-
ing tolerances,

4) ohmic loss.

Proof: Let arms 1-3 be the main guide, and
arms 2–4 the auxiliary guide. If the hybrid
is fully symmetric its scattering matrix will

have the form,

$ $f~A B C D’

1

‘BADC
s’=

CDAB ‘

ID CBAJ

where A and B are small, and C and D have

approximately equal amplitude. If the

hybrid is lossless, S is unitary, which gives
us

Re (A~) + Re (C~~) = O, (1)

Re (i4~) + Re (B~~) = O, (2)

Re (AD) + Re (B~~) = O, (3)

where the bar denotes the complex conju-

gate. Let A =A1 +jAz, andl similarly for B

and D, and let the reference planes be chosen
so that C is real. Then ( 1) shows that D1

is a second-order small quantity, leading to
the first property that C and D are in quad-
rature.

Putting D =jC, we have from (2) and

(3), respectively,

A, = – B,,

A, = – BL.

Hence A = –i~, and A and B have the same

amplitude. -
I wish to thank T. A. Williams for helo-

ful comments, and the Executive of tie

AEI Electronic Apparatus Division and the
Board of the BTH Company for permission
to publish this note.
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Trafford Park, M arrchester, Eng.

Attenuation in a Resonant

Ring Circuit*

The use of a resonant circuit will permit

raising the strength of electromagnetic fields

to values considerably higher than that

available directly from a transmitter. In the
usual resonant cavity, standing waves exist
which may raise some doubt as to the use-
fulness of this method for testing certain

* Recewed bv the PGMTT, November 12, 1959. * Received by the PGMTT, November 13, 19.59.


